Minimum Message Length Ridge Regression for Generalized Linear Models

نویسندگان

  • Daniel F. Schmidt
  • Enes Makalic
چکیده

This paper introduces an information theoretic model selection and ridge parameter estimation criterion for generalized linear models based on the minimum message length principle. The criterion is highly general in nature, and handles a range of target distributions, including the normal, binomial, Poisson, geometric and gamma distributions. Estimation of the regression parameters, the ridge hyperparameter and the set of covariates associated with targets is all performed within the same framework by minimisation of the message length. Experiments on simulated and real data suggest that the criterion is competetive with, and often superior to, the corrected Akaike information criterion in terms of both parameter estimation and model selection tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Approximating Message Lengths of Hierarchical Bayesian Models Using Posterior Sampling

Inference of complex hierarchical models is an increasingly common problem in modern Bayesian data analysis. Unfortunately, there are few computationally efficient and widely applicable methods for selecting between competing hierarchical models. In this paper we adapt ideas from the information theoretic minimum message length principle and propose a powerful yet simple model selection criteri...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Bayesian Posterior Comprehension via Message from Monte Carlo

We discuss the problem of producing an epitome, or brief summary, of a Bayesian posterior distribution and then investigate a general solution based on the Minimum Message Length (MML) principle. Clearly, the optimal criterion for choosing such an epitome is determined by the epitome’s intended use. The interesting general case is where this use is unknown since, in order to be practical, the c...

متن کامل

Minimum Description Length Model Selection Criteria for Generalized Linear Models

This paper derives several model selection criteria for generalized linear models (GLMs) following the principle of Minimum Description Length (MDL). We focus our attention on the mixture form of MDL. Normal or normal-inverse gamma distributions are used to construct the mixtures, depending on whether or not we choose to account for possible over-dispersion in the data. For the latter, we use E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013